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Need multiple GPUs for:
• Problems which require more memory that is available on a single 

GPU
• Problems which take too long to compute on a single GPU
• number of approaches available
• the CUDA version you are using and Compute Capability of the 

GPU are important here - the more advanced, the more you can do 
with multiple GPUs

• good time to introduce a very useful feature of later versions of 
CUDA - Unified Virtual Addressing, or Unified Address Space
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Unified Virtual Addressing
• Makes the separate memory of host and attached GPUs appear as 

a single region of memory
• Allows easier (for the programmer) memory access between host 

and GPUs, without requiring a cudaMemcpy operation in all cases
• Easy does not necessarily mean fast - the fundamental limitations 

of the bandwidth between host and GPU  will still apply
• Nevertheless, in some cases this type of access will be faster, since 

computation and memory transfer will be overlapped by default
• Some of this functionality was present in older versions of CUDA 

via a more complicated, less convenient mechanism.  We will not 
cover it.
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UVA simplifies cudaMemcpy
• Can now use the argument cudaMemcpyDefault  instead of 

cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost etc.
• CUDA will now automatically detect where the memory referred 

to by pointers supplied as cudaMemcpy arguments resides
• more convenient for the programmer, avoids errors
• IMPORTANT: for this to work for host memory, you must allocate 

it as pinned memory via CUDA (with cudaMallocHost).  It will 
not work for memory allocated via malloc.

• remember to compile for arch 2.0 or higher
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Zero copy memory access
• Unified address space means kernel can access host memory 

directly via a host pointer passed as argument to kernel 
• the memory on host must be allocated as pinned memory for UVA 

to work
• Called “zero copy” because an explicit copy operation is not 

required
• There is still a cost to accessing host memory from GPU. If you 

need to do a lot of GPU computation on data, it’s better to move it 
to GPU memory

• The advantage of zero-copy is that computation and memory 
transfer can now be made to overlap automatically by CUDA
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Be careful with “Unified”  
• certain operations permitted but not all
• you cannot access the GPU memory directly from host 

 

 

... 

cudaMalloc((void **) &y_0, memsize)   // allocated y_0 on GPU 

for ( i = 0; i < n; i++) y_0[i] = 1.0; //try to modify y_0 from host, this will fail! 

...
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Exercise 1 a
• revisit SAXPY problem, now using UVA 
• change CUDA memory copies to use the default direction 

keyword
• starting file is from Lecture 2 code, located in:  
 
/home/ppomorsk/CSE746_lec10/saxpy_uva
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Exercise 1 b
• modify code so that the GPU kernel does its work in host memory
• compare performance
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Possible multiple GPUs paradigms
• single host thread controlling multiple GPUs which are connected 

directly to the host via PCI bus. Thread can control only 1 GPU at 
a time, so it will be switching between them.

• multiple host (OpenMP) threads controlling multiple GPUs which 
are connected to the host via PCI bus. Could assign a single GPU 
to each thread.

• multiple MPI processes, each on node with some GPUs connected 
via PCI bus, nodes connected with network.  Each MPI process 
could be assigned on GPU.

• mixtures of above (threads + MPI) also possible  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single host thread - multiple GPUs
• only one GPU can be controlled at a time
• program sets which GPU is controlled with  

 cudaSetDevice(gpu_number);  
where gpu_number can be 0,1,... up (number of GPUs -1)

• after cudaSetDevice is called, all subsequent CUDA calls running 
on GPUs and kernels will run on GPU selected in gpu_number

•  when programming, it is a good idea to add cudaSetDevice before 
every GPU call, to be sure which GPU it’s executed on:  

 

... 
cudaSetDevice(gpu_number); saxpy_gpu<<<nBlocks, blockSize>>>(y_host, x_host, alpha, n); 
cudaSetDevice(gpu_number); cudaDeviceSynchronize(); 
...
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multi-GPU synchronization
• cudaDeviceSynchronize() will only synchronize host with the 

currently set GPU
• if multiple GPUs are in use and all need to be synchronized, 

cudaDeviceSynchronize has to be called separately for each one 

 

... 
/* in this example have 2 GPUs which we need to synchornize */ 
cudaSetDevice(0); cudaDeviceSynchronize(); 
cudaSetDevice(1); cudaDeviceSynchronize(); 
...
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Exercise 2
• modify code from 1b so that SAXPY operation is done on 2 GPUs 
• simply have each GPU handle one half of the vector
• carefully modify the CUDA timing mechanisms so correct timing 

is obtained on each GPU
• compare performance with code from exercise 1
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multiple GPUs with multiple threads
• can use OpenMP threads, and assign a GPU to each thread
 

 
/* compile with:  
nvcc -Xcompiler -fopenmp -arch=sm_20 -O2 code.cu -o code.x 
run with 
OMP_NUM_THREADS=2 ./code.x 
... 
#include <omp.h> 
... 

#pragma omp parallel private(tid,error) 
  { 
   tid = omp_get_thread_num(); 

   cudaSetDevice(tid); 
... 
   }
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Exercise 3
• modify code from exercise 2 to use 2 OpenMP threads
• you will only need to call cudaSetDevice once, at the beginning of 

parallel region
• to keep things simple, you do not have to use CUDA timing calls 

in this case 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multiple host threads accessing same GPU?
• not typically done, the general approach is to have a single thread 

of a process assigned to access a particular GPU
• if unavoidable, should have each thread access using its own 

stream to access the GPU, this is anyway required for the threads 
to run in parallel with each other
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Peer-to-Peer (P2P) transfer between GPUs
• in UVA model, GPU to GPU transfer is possible in code, but it 

actually still goes through host memory
• it is possible to enable transfer directly between GPUs over the 

PCI bus
• PCI bus is still slow, but you gain a little bit of time if you can 

avoid the host memory during the transfer
• If P2P is not available, program will fall back to normal copy
• To enable peer transfer between gpu0 and gpu1:  

cudaSetDevice(gpu0); cudaDeviceEnablePeerAccess(gpu1, 0);
• second argument must always be set to zero, and is currently 

meaningless (reserved for future use)
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Peer-to-Peer (P2P) transfer between GPUs
• it is good to check if P2P is enabled.  Even on a single node 

particular GPUs may not be on same PCI bus, so P2P not available

 

 

    printf("\nChecking GPU(s) for support of peer to peer memory access...\n"); 
    int can_access_peer_0_1, can_access_peer_1_0; 
    cudaDeviceCanAccessPeer(&can_access_peer_0_1, 0, 1); 
    cudaDeviceCanAccessPeer(&can_access_peer_1_0, 1, 0); 
    printf("%d %d \n",can_access_peer_0_1, can_access_peer_1_0); 

    if(can_access_peer_0_1==1 && can_access_peer_1_0==1){ 
       printf("peer access possible between 0 and 1 \n"); 
    } 
    else{ 
       printf("no peer access possible \n"); 
    } 

    printf("Enabling peer access between GPU%d and GPU%d...\n", 0, 1); 
    cudaSetDevice(0);cudaDeviceEnablePeerAccess(1, 0); 
    cudaSetDevice(1);cudaDeviceEnablePeerAccess(0, 0); 
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Exercise 4
• write a program which copies memory between 2 GPUs
• compare performance with peer transfer enabled and without
• start code in:  

/home/ppomorsk/CSE746_lec10/p2p_transfer
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Multiple GPUs via MPI
• each MPI process is independent, and can be single and 

multithreaded
• for each process, we have same binding mechanisms to GPU
• can run on one node where all GPUs are visible to all processes, or 

on multiple nodes where the MPI process only sees GPUs 
available on its node

• MPI and CUDA code can be combined in one source file
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Multiple GPUs via MPI - detection
• With MPI approach programmer has to be more careful which 

GPU MPI process binds to, since multiple MPI processes could be 
assigned to the same node

 
/*  compile: 
module unload intel openmpi 
module load gcc/4.8.2 openmpi/gcc/1.8.3 
nvcc -I/opt/sharcnet/openmpi/1.8.3/gcc/include/ -L/opt/sharcnet/openmpi/1.8.3/gcc/lib/ -
lmpi  test_mpi.cu -o test.x 
run: mpirun -np 2 -o test.x 
*/ 
#include <mpi.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#include "cuda.h" 
int main(int argc, char *argv[]){ 
        int numprocs, rank,namelen; 
        int devcount; 
        char processor_name[MPI_MAX_PROCESSOR_NAME]; 
        MPI_Init(&argc,&argv); 
        MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 
        MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
        MPI_Get_processor_name(processor_name, &namelen); 
        cudaGetDeviceCount(&devcount); 
        printf("Process %d of  %d running on node %s  is detecting %d GPU devices 
\n",rank,numprocs,processor_name,devcount); 
        MPI_Finalize();return 0;}
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Multiple GPUs via MPI
• with UVA and other advanced features, can use CUDA allocated 

arrays in MPI calls directly (this did not work in the past)
• if two processes reside on same node, CUDA-aware MPI should 

be able to take advantage of P2P transfer between them
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Exercise 5
• write program testing speed of memory transfer between 2 GPUs, 

each attached to one MPI process
• start code in:  

/home/ppomorsk/CSE746_lec10/mpi_cuda 
has host to host transfer MPI already implemented

• implement  
gpu0 -> host0 -> host1 -> gpu1

• then implement  
gpu0 -> gpu1

• pure MPI code (no CUDA) is provided also for testing purposes  


