
CSE 746 - Parallel and High
Performance Computing
Lecture 10 - CUDA on multiple
GPUs

Pawel Pomorski, HPC Software Analyst
SHARCNET, University of Waterloo
ppomorsk@sharcnet.ca
http://ppomorsk.sharcnet.ca/

mailto:ppomorsk@sharcnet.ca
http://ppomorsk.sharcnet.ca

CSE746 2015 Lecture 10 Pawel Pomorski

Need multiple GPUs for:
• Problems which require more memory that is available on a single

GPU
• Problems which take too long to compute on a single GPU
• number of approaches available
• the CUDA version you are using and Compute Capability of the

GPU are important here - the more advanced, the more you can do
with multiple GPUs

• good time to introduce a very useful feature of later versions of
CUDA - Unified Virtual Addressing, or Unified Address Space

CSE746 2015 Lecture 10 Pawel Pomorski

Unified Virtual Addressing
• Makes the separate memory of host and attached GPUs appear as

a single region of memory
• Allows easier (for the programmer) memory access between host

and GPUs, without requiring a cudaMemcpy operation in all cases
• Easy does not necessarily mean fast - the fundamental limitations

of the bandwidth between host and GPU will still apply
• Nevertheless, in some cases this type of access will be faster, since

computation and memory transfer will be overlapped by default
• Some of this functionality was present in older versions of CUDA

via a more complicated, less convenient mechanism. We will not
cover it.

CSE746 2015 Lecture 10 Pawel Pomorski

UVA simplifies cudaMemcpy
• Can now use the argument cudaMemcpyDefault instead of

cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost etc.
• CUDA will now automatically detect where the memory referred

to by pointers supplied as cudaMemcpy arguments resides
• more convenient for the programmer, avoids errors
• IMPORTANT: for this to work for host memory, you must allocate

it as pinned memory via CUDA (with cudaMallocHost). It will
not work for memory allocated via malloc.

• remember to compile for arch 2.0 or higher

CSE746 2015 Lecture 10 Pawel Pomorski

Zero copy memory access
• Unified address space means kernel can access host memory

directly via a host pointer passed as argument to kernel
• the memory on host must be allocated as pinned memory for UVA

to work
• Called “zero copy” because an explicit copy operation is not

required
• There is still a cost to accessing host memory from GPU. If you

need to do a lot of GPU computation on data, it’s better to move it
to GPU memory

• The advantage of zero-copy is that computation and memory
transfer can now be made to overlap automatically by CUDA

CSE746 2015 Lecture 10 Pawel Pomorski

Be careful with “Unified”
• certain operations permitted but not all
• you cannot access the GPU memory directly from host

 

 

...

cudaMalloc((void **) &y_0, memsize) // allocated y_0 on GPU

for (i = 0; i < n; i++) y_0[i] = 1.0; //try to modify y_0 from host, this will fail!

...

CSE746 2015 Lecture 10 Pawel Pomorski

Exercise 1 a
• revisit SAXPY problem, now using UVA
• change CUDA memory copies to use the default direction

keyword
• starting file is from Lecture 2 code, located in:  
 
/home/ppomorsk/CSE746_lec10/saxpy_uva

 

 

CSE746 2015 Lecture 10 Pawel Pomorski

Exercise 1 b
• modify code so that the GPU kernel does its work in host memory
• compare performance
 

 

CSE746 2015 Lecture 10 Pawel Pomorski

Possible multiple GPUs paradigms
• single host thread controlling multiple GPUs which are connected

directly to the host via PCI bus. Thread can control only 1 GPU at
a time, so it will be switching between them.

• multiple host (OpenMP) threads controlling multiple GPUs which
are connected to the host via PCI bus. Could assign a single GPU
to each thread.

• multiple MPI processes, each on node with some GPUs connected
via PCI bus, nodes connected with network. Each MPI process
could be assigned on GPU.

• mixtures of above (threads + MPI) also possible  

CSE746 2015 Lecture 10 Pawel Pomorski

single host thread - multiple GPUs
• only one GPU can be controlled at a time
• program sets which GPU is controlled with  

 cudaSetDevice(gpu_number);  
where gpu_number can be 0,1,... up (number of GPUs -1)

• after cudaSetDevice is called, all subsequent CUDA calls running
on GPUs and kernels will run on GPU selected in gpu_number

• when programming, it is a good idea to add cudaSetDevice before
every GPU call, to be sure which GPU it’s executed on:  

 

...
cudaSetDevice(gpu_number); saxpy_gpu<<<nBlocks, blockSize>>>(y_host, x_host, alpha, n);
cudaSetDevice(gpu_number); cudaDeviceSynchronize();
...

CSE746 2015 Lecture 10 Pawel Pomorski

multi-GPU synchronization
• cudaDeviceSynchronize() will only synchronize host with the

currently set GPU
• if multiple GPUs are in use and all need to be synchronized,

cudaDeviceSynchronize has to be called separately for each one

 

...
/* in this example have 2 GPUs which we need to synchornize */
cudaSetDevice(0); cudaDeviceSynchronize();
cudaSetDevice(1); cudaDeviceSynchronize();
...

CSE746 2015 Lecture 10 Pawel Pomorski

Exercise 2
• modify code from 1b so that SAXPY operation is done on 2 GPUs
• simply have each GPU handle one half of the vector
• carefully modify the CUDA timing mechanisms so correct timing

is obtained on each GPU
• compare performance with code from exercise 1
 

 

CSE746 2015 Lecture 10 Pawel Pomorski

multiple GPUs with multiple threads
• can use OpenMP threads, and assign a GPU to each thread
 

 
/* compile with:
nvcc -Xcompiler -fopenmp -arch=sm_20 -O2 code.cu -o code.x
run with
OMP_NUM_THREADS=2 ./code.x
...
#include <omp.h>
...

#pragma omp parallel private(tid,error)
 {
 tid = omp_get_thread_num();

 cudaSetDevice(tid);
...
 }

CSE746 2015 Lecture 10 Pawel Pomorski

Exercise 3
• modify code from exercise 2 to use 2 OpenMP threads
• you will only need to call cudaSetDevice once, at the beginning of

parallel region
• to keep things simple, you do not have to use CUDA timing calls

in this case 

 

CSE746 2015 Lecture 10 Pawel Pomorski

multiple host threads accessing same GPU?
• not typically done, the general approach is to have a single thread

of a process assigned to access a particular GPU
• if unavoidable, should have each thread access using its own

stream to access the GPU, this is anyway required for the threads
to run in parallel with each other

 

CSE746 2015 Lecture 10 Pawel Pomorski

Peer-to-Peer (P2P) transfer between GPUs
• in UVA model, GPU to GPU transfer is possible in code, but it

actually still goes through host memory
• it is possible to enable transfer directly between GPUs over the

PCI bus
• PCI bus is still slow, but you gain a little bit of time if you can

avoid the host memory during the transfer
• If P2P is not available, program will fall back to normal copy
• To enable peer transfer between gpu0 and gpu1:  

cudaSetDevice(gpu0); cudaDeviceEnablePeerAccess(gpu1, 0);
• second argument must always be set to zero, and is currently

meaningless (reserved for future use)

CSE746 2015 Lecture 10 Pawel Pomorski

Peer-to-Peer (P2P) transfer between GPUs
• it is good to check if P2P is enabled. Even on a single node

particular GPUs may not be on same PCI bus, so P2P not available

 

 

 printf("\nChecking GPU(s) for support of peer to peer memory access...\n");
 int can_access_peer_0_1, can_access_peer_1_0;
 cudaDeviceCanAccessPeer(&can_access_peer_0_1, 0, 1);
 cudaDeviceCanAccessPeer(&can_access_peer_1_0, 1, 0);
 printf("%d %d \n",can_access_peer_0_1, can_access_peer_1_0);

 if(can_access_peer_0_1==1 && can_access_peer_1_0==1){
 printf("peer access possible between 0 and 1 \n");
 }
 else{
 printf("no peer access possible \n");
 }

 printf("Enabling peer access between GPU%d and GPU%d...\n", 0, 1);
 cudaSetDevice(0);cudaDeviceEnablePeerAccess(1, 0);
 cudaSetDevice(1);cudaDeviceEnablePeerAccess(0, 0);

CSE746 2015 Lecture 10 Pawel Pomorski

Exercise 4
• write a program which copies memory between 2 GPUs
• compare performance with peer transfer enabled and without
• start code in:  

/home/ppomorsk/CSE746_lec10/p2p_transfer
 

 

CSE746 2015 Lecture 10 Pawel Pomorski

Multiple GPUs via MPI
• each MPI process is independent, and can be single and

multithreaded
• for each process, we have same binding mechanisms to GPU
• can run on one node where all GPUs are visible to all processes, or

on multiple nodes where the MPI process only sees GPUs
available on its node

• MPI and CUDA code can be combined in one source file

 

CSE746 2015 Lecture 10 Pawel Pomorski

Multiple GPUs via MPI - detection
• With MPI approach programmer has to be more careful which

GPU MPI process binds to, since multiple MPI processes could be
assigned to the same node

 
/* compile:
module unload intel openmpi
module load gcc/4.8.2 openmpi/gcc/1.8.3
nvcc -I/opt/sharcnet/openmpi/1.8.3/gcc/include/ -L/opt/sharcnet/openmpi/1.8.3/gcc/lib/ -
lmpi test_mpi.cu -o test.x
run: mpirun -np 2 -o test.x
*/
#include <mpi.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "cuda.h"
int main(int argc, char *argv[]){
 int numprocs, rank,namelen;
 int devcount;
 char processor_name[MPI_MAX_PROCESSOR_NAME];
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Get_processor_name(processor_name, &namelen);
 cudaGetDeviceCount(&devcount);
 printf("Process %d of %d running on node %s is detecting %d GPU devices
\n",rank,numprocs,processor_name,devcount);
 MPI_Finalize();return 0;}

CSE746 2015 Lecture 10 Pawel Pomorski

Multiple GPUs via MPI
• with UVA and other advanced features, can use CUDA allocated

arrays in MPI calls directly (this did not work in the past)
• if two processes reside on same node, CUDA-aware MPI should

be able to take advantage of P2P transfer between them

 

CSE746 2015 Lecture 10 Pawel Pomorski

Exercise 5
• write program testing speed of memory transfer between 2 GPUs,

each attached to one MPI process
• start code in:  

/home/ppomorsk/CSE746_lec10/mpi_cuda 
has host to host transfer MPI already implemented

• implement  
gpu0 -> host0 -> host1 -> gpu1

• then implement  
gpu0 -> gpu1

• pure MPI code (no CUDA) is provided also for testing purposes  

