
CSE 746 - Parallel and High
Performance Computing
Lecture 4 - Reduction with
CUDA

Pawel Pomorski, HPC Software Analyst
SHARCNET, University of Waterloo
ppomorsk@sharcnet.ca
http://ppomorsk.sharcnet.ca/

mailto:ppomorsk@sharcnet.ca
http://ppomorsk.sharcnet.ca

CSE746 2015 Lecture 4 Pawel Pomorski

Reductions in CUDA

• Reductions: min/max, average, sum, ...
• Can be a significant bottleneck for the performance,

because it breaks pure data parallelism.
• There is no perfect way to do reductions in CUDA.  

The two commonly used approaches (each with its own set
of constraints) are:  
 
Binary reductions  
 
Atomic reductions  

CSE746 2015 Lecture 4 Pawel Pomorski

Binary reductions

• The most universal type of reductions (e.g., the only way
to do double precision reductions)

• Even when using single precision (which is faster than
double precision), binary summation will be more accurate
than atomic summation, because it employs more accurate
pairwise summation.

• Usually the more efficient way to do reductions

CSE746 2015 Lecture 4 Pawel Pomorski

Binary reductions

• But: typically relies on (very limited) shared memory –
placing constraints on how many reductions per kernel one
can do

• Relies on thread synchronization, which can only be done
within a single block – places constraints on how many
threads can participate in a binary reduction (usually 64 ...
256; maximum 1024)

• For a large number of data elements (>1024), this leads to the
need to do multi-level (multi-kernel) binary reductions, with
storing the intermediate data in device memory; this can
reduce the performance

• Can be less efficient for small number of data elements (<64)
• Significantly complicates the code

CSE746 2015 Lecture 4 Pawel Pomorski

Atomic reductions

• Very simple and elegant code  
- Almost no change compared to the serial code  
- A single line code: much better for code development and
maintenance  
- No need for multiple intermediate kernels (saves on
overheads related to multiple kernel launches)  
- Requires no code changes when dealing with any number of
data elements – from 2 to millions  

• Usually more efficient when the number of data elements is
small (<64)

CSE746 2015 Lecture 4 Pawel Pomorski

Atomic reductions

• But: atomic operations are serialized, which usually means
worse performance

• Only single precision accuracy - can become really bad for
summation and averaging when the number of elements is
large (many thousands) – because it uses sequential
summation.

• All the above means that to find the right way to carry out a
reduction in CUDA, with the right balance between code
readability, efficiency, and accuracy, one often has to try both
binary and atomic ways, and choose the best.  

CSE746 2015 Lecture 4 Pawel Pomorski

Binary summation with number of elements being
a power of 2

__shared__ double sum[BLOCK_SIZE]; 
... 
__syncthreads(); // Required if there were prior computations in the kernel
int nTotalThreads = blockDim.x; // Total number of active threads; 
// only the first half of the threads will be active.

while(nTotalThreads > 1)
{  
 int halfPoint = (nTotalThreads >> 1); // divide by two

 if (threadIdx.x < halfPoint)
 { 
 int thread2 = threadIdx.x + halfPoint;
 sum[threadIdx.x] += sum[thread2]; // Pairwise summation
 }
__syncthreads();
nTotalThreads = halfPoint; // Reducing the binary tree size by two
}

CSE746 2015 Lecture 4 Pawel Pomorski

Binary averaging with number of elements being a
power of 2

__shared__ double avg[BLOCK_SIZE];
 ...
__syncthreads(); // Required if there were prior computations in the kernel
int nTotalThreads = blockDim.x;

while(nTotalThreads > 1)
{
 int halfPoint = (nTotalThreads >> 1); // divide by two
 if (threadIdx.x < halfPoint)
 {
 int thread2 = threadIdx.x + halfPoint;
 avg[threadIdx.x] += avg[thread2]; // First sum
 avg[threadIdx.x] /= 2; // and then divide
 }  
__syncthreads(); 
nTotalThreads = halfPoint; // Reducing the binary tree size by two
}

CSE746 2015 Lecture 4 Pawel Pomorski

Binary min/max with number of elements being a
power of 2

__shared__ double min[BLOCK_SIZE]; 
... 
__syncthreads(); // Required if there were prior computations in the kernel
int nTotalThreads = blockDim.x;

while(nTotalThreads > 1)
{
 int halfPoint = (nTotalThreads >> 1); // divide by two
 if (threadIdx.x < halfPoint)
 { 
 int thread2 = threadIdx.x + halfPoint;
 double temp = min[thread2]; 
 if (temp < min[threadIdx.x])
 min[threadIdx.x] = temp;
 } 
 __syncthreads(); 
 nTotalThreads = halfPoint; // Reducing the binary tree size by two
}

CSE746 2015 Lecture 4 Pawel Pomorski

Multiple binary reductions

__shared__ double min[BLOCK_SIZE], sum[BLOCK_SIZE]; 
... 
__syncthreads(); // Required if there were prior computations in the kernel
int nTotalThreads = blockDim.x;

while(nTotalThreads > 1)
{  
 int halfPoint = (nTotalThreads >> 1); // divide by two

 if (threadIdx.x < halfPoint) 
 {
 int thread2 = threadIdx.x + halfPoint;
 sum[threadIdx.x] += sum[thread2]; // First reduction

 double temp = min[thread2];
 if (temp < min[threadIdx.x])
 min[threadIdx.x] = temp; // Second reduction
 }
__syncthreads();
nTotalThreads = halfPoint; // Reducing the binary tree size by two
}

CSE746 2015 Lecture 4 Pawel Pomorski

Two-step binary reduction

// Host code 
#define BSIZE 1024 // Always use a power of two; can be 32...1024
// Total number of elements to process: 1024 < Ntotal < 1024^2

int Nblocks = (Ntotal+BSIZE-1) / BSIZE;
 
// First step (the results should be stored in global device memory):
x_prereduce <<<Nblocks, BSIZE >>> ();

// Second step (will read the input from global device memory):
x_reduce <<<1, Nblocks >>> ();

CSE746 2015 Lecture 4 Pawel Pomorski

Binary reduction with an arbitrary number of
elements (BLOCK_SIZE)
__shared__ double sum[BLOCK_SIZE];
...
__syncthreads(); // Required if there were prior computations in the kernel 
int nTotalThreads = blockDim_2; // Total number of threads, rounded up to the next  
 //power of two

while(nTotalThreads > 1)
{
 int halfPoint = (nTotalThreads >> 1); // divide by two

 if (threadIdx.x < halfPoint)
 { 
 int thread2 = threadIdx.x + halfPoint; 
 if (thread2 < blockDim.x) // Skipping the fictitious threads  
 // blockDim.x ...blockDim_2-1
 sum[threadIdx.x] += sum[thread2]; // Pairwise summation
 }
__syncthreads();
nTotalThreads = halfPoint; // Reducing the binary tree size by two
}

CSE746 2015 Lecture 4 Pawel Pomorski

Binary reduction with an arbitrary number of
elements (BLOCK_SIZE)

int NearestPowerOf2 (int n)
{
 if (!n) return n; // (0 == 2^0)

 int x = 1;
 while(x < n)
 { 
 x <<= 1;
 }
 return x;
}

• You will have to compute blockDim_2 (blockDim.x rounded up to
the next power of two), either on device or on host (and then copy
it to device). One could use the following function to compute
blockDim_2, valid for 32-bit integers:  

CSE746 2015 Lecture 4 Pawel Pomorski

Atomic reductions

// In global device memory:
__device__ float xsum; __device__ int isum, imax;

// In a kernel:
float x; 
int i; 
__shared__ imin; 
... 
atomicAdd (&xsum, x);
atomicAdd (&isum, i);
atomicMax (&imax, i);
atomicMin (&imin, i); 
 
//see CUDA specification for full list of atomic operations available

CSE746 2015 Lecture 4 Pawel Pomorski

Writing your own atomic operations in CUDA

__device__ double atomicAdd(double* address, double val)
{
 unsigned long long int* address_as_ull = (unsigned long long int*)address;
 unsigned long long int old = *address_as_ull, assumed;
 do {
 assumed = old;
 old = atomicCAS(address_as_ull, assumed,
 __double_as_longlong(val +__longlong_as_double(assumed)));
 } while (assumed != old);
 return __longlong_as_double(old);
}

• Possible, but this is a more advanced topic
• Any atomic operation can be implemented based on atomicCAS()  

(Compare and Swap)
• Performance may be very poor
• Here is what a double precision atomicAdd would look like  

CSE746 2015 Lecture 4 Pawel Pomorski

atomicCAS

int atomicCAS(int* address, int compare, int val);
unsigned int atomicCAS(unsigned int* address,
 unsigned int compare,
 unsigned int val);
unsigned long long int atomicCAS(unsigned long long int* address,
 unsigned long long int compare,
 unsigned long long int val);

• reads the 32-bit or 64-bit word old located at the address address  
in global or shared memory

• computes (old == compare ? val : old), stores the result back to
memory at the same address

• returns old

CSE746 2015 Lecture 4 Pawel Pomorski

Exercise - implement reduction via 3 approaches

Can be found in: 
 
/home/ppomorsk/CSE746_lec4/Reduction

17

CSE746 2015 Lecture 4 Pawel Pomorski

Exercise - implement largest prime search

Can be found in: 
 
/home/ppomorsk/CSE746_lec4/Primes

18

