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Reductions in CUDA

• Reductions: min/max, average, sum, ... 
• Can be a significant bottleneck for the performance, 

because it breaks pure data parallelism. 
• There is no perfect way to do reductions in CUDA.  

The two commonly used approaches (each with its own set 
of constraints) are:  
 
Binary reductions  
 
Atomic reductions  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Binary reductions

• The most universal type of reductions (e.g., the only way 
to do double precision reductions) 

• Even when using single precision (which is faster than 
double precision), binary summation will be more accurate 
than atomic summation, because it employs more accurate 
pairwise summation. 

• Usually the more efficient way to do reductions
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Binary reductions

• But: typically relies on (very limited) shared memory – 
placing constraints on how many reductions per kernel one 
can do  

• Relies on thread synchronization, which can only be done 
within a single block – places constraints on how many 
threads can participate in a binary reduction (usually 64 ... 
256; maximum 1024)  

• For a large number of data elements (>1024), this leads to the 
need to do multi-level (multi-kernel) binary reductions, with 
storing the intermediate data in device memory; this can 
reduce the performance  

• Can be less efficient for small number of data elements (<64)  
• Significantly complicates the code 
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Atomic reductions

• Very simple and elegant code  
- Almost no change compared to the serial code  
- A single line code: much better for code development and 
maintenance  
- No need for multiple intermediate kernels (saves on 
overheads related to multiple kernel launches)  
- Requires no code changes when dealing with any number of 
data elements – from 2 to millions  

• Usually more efficient when the number of data elements is 
small (<64)
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Atomic reductions

• But: atomic operations are serialized, which usually means 
worse performance 

• Only single precision accuracy - can become really bad for 
summation and averaging when the number of elements is 
large (many thousands) – because it uses sequential 
summation. 

• All the above means that to find the right way to carry out a 
reduction in CUDA, with the right balance between code 
readability, efficiency, and accuracy, one often has to try both 
binary and atomic ways, and choose the best.  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Binary summation with number of elements being 
a power of 2

__shared__ double sum[BLOCK_SIZE]; 
... 
__syncthreads(); // Required if there were prior computations in the kernel 
int nTotalThreads = blockDim.x; // Total number of active threads; 
// only the first half of the threads will be active. 

while(nTotalThreads > 1) 
{  
  int halfPoint = (nTotalThreads >> 1); // divide by two 

  if (threadIdx.x < halfPoint) 
  { 
    int thread2 = threadIdx.x + halfPoint; 
    sum[threadIdx.x] += sum[thread2]; // Pairwise summation  
  } 
__syncthreads(); 
nTotalThreads = halfPoint; // Reducing the binary tree size by two  
}
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Binary averaging with number of elements being a 
power of 2

__shared__ double avg[BLOCK_SIZE]; 
 ... 
__syncthreads(); // Required if there were prior computations in the kernel 
int nTotalThreads = blockDim.x; 

while(nTotalThreads > 1)  
{ 
  int halfPoint = (nTotalThreads >> 1); // divide by two 
  if (threadIdx.x < halfPoint)  
  { 
    int thread2 = threadIdx.x + halfPoint;  
    avg[threadIdx.x] += avg[thread2]; //   First sum  
    avg[threadIdx.x] /= 2; // and then divide 
  }  
__syncthreads(); 
nTotalThreads = halfPoint; // Reducing the binary tree size by two 
}
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Binary min/max with number of elements being a 
power of 2

__shared__ double min[BLOCK_SIZE]; 
... 
__syncthreads(); // Required if there were prior computations in the kernel 
int nTotalThreads = blockDim.x; 

while(nTotalThreads > 1)  
{ 
  int halfPoint = (nTotalThreads >> 1); // divide by two  
  if (threadIdx.x < halfPoint) 
  { 
    int thread2 = threadIdx.x + halfPoint;  
    double temp = min[thread2]; 
    if (temp < min[threadIdx.x]) 
       min[threadIdx.x] = temp; 
  } 
  __syncthreads(); 
  nTotalThreads = halfPoint; // Reducing the binary tree size by two 
}
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Multiple binary reductions

__shared__ double min[BLOCK_SIZE], sum[BLOCK_SIZE]; 
... 
__syncthreads(); // Required if there were prior computations in the kernel 
int nTotalThreads = blockDim.x; 

while(nTotalThreads > 1) 
{  
  int halfPoint = (nTotalThreads >> 1); // divide by two  

  if (threadIdx.x <  halfPoint) 
  { 
    int thread2 = threadIdx.x + halfPoint; 
    sum[threadIdx.x] += sum[thread2]; // First reduction 

    double temp = min[thread2];  
    if (temp < min[threadIdx.x]) 
       min[threadIdx.x] = temp; // Second reduction  
  } 
__syncthreads(); 
nTotalThreads = halfPoint; // Reducing the binary tree size by two  
}
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Two-step binary reduction

// Host code 
#define BSIZE 1024 // Always use a power of two; can be 32...1024  
// Total number of elements to process: 1024 < Ntotal < 1024^2 

int Nblocks = (Ntotal+BSIZE-1) / BSIZE; 
 
// First step (the results should be stored in global device memory): 
x_prereduce <<<Nblocks, BSIZE >>> (); 

// Second step (will read the input from global device memory): 
x_reduce <<<1, Nblocks >>> ();



CSE746 2015 Lecture 4 Pawel Pomorski

Binary reduction with an arbitrary number of 
elements (BLOCK_SIZE)
__shared__ double sum[BLOCK_SIZE];  
... 
__syncthreads(); // Required if there were prior computations in the kernel 
int nTotalThreads = blockDim_2; // Total number of threads, rounded up to the next  
                                //power of two 

while(nTotalThreads > 1)  
{ 
  int halfPoint = (nTotalThreads >> 1); // divide by two 

  if (threadIdx.x < halfPoint) 
    { 
    int thread2 = threadIdx.x + halfPoint; 
    if (thread2 < blockDim.x) // Skipping the fictitious threads  
                              // blockDim.x ...blockDim_2-1 
       sum[threadIdx.x] += sum[thread2]; // Pairwise summation  
    } 
__syncthreads(); 
nTotalThreads = halfPoint; // Reducing the binary tree size by two  
}
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Binary reduction with an arbitrary number of 
elements (BLOCK_SIZE)

int NearestPowerOf2 (int n)  
{ 
  if (!n) return n; // (0 == 2^0) 

  int x = 1;  
  while(x < n) 
    { 
    x <<= 1; 
    }  
  return x; 
}

• You will have to compute blockDim_2 (blockDim.x rounded up to 
the next power of two), either on device or on host (and then copy 
it to device). One could use the following function to compute 
blockDim_2, valid for 32-bit integers:  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Atomic reductions 

// In global device memory: 
__device__ float xsum; __device__ int isum, imax; 

// In a kernel: 
float x; 
int i; 
__shared__ imin; 
... 
atomicAdd (&xsum, x);  
atomicAdd (&isum, i);  
atomicMax (&imax, i);  
atomicMin (&imin, i); 
 
//see CUDA specification for full list of atomic operations available
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Writing your own atomic operations in CUDA

__device__ double atomicAdd(double* address, double val) 
{ 
    unsigned long long int* address_as_ull = (unsigned long long int*)address; 
    unsigned long long int old = *address_as_ull, assumed; 
    do { 
        assumed = old; 
        old = atomicCAS(address_as_ull, assumed, 
                        __double_as_longlong(val +__longlong_as_double(assumed))); 
    } while (assumed != old); 
    return __longlong_as_double(old); 
}

• Possible, but this is a more advanced topic 
• Any atomic operation can be implemented based on atomicCAS()  

(Compare and Swap) 
• Performance may be very poor 
• Here is what a double precision atomicAdd would look like  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atomicCAS 

int atomicCAS(int* address, int compare, int val); 
unsigned int atomicCAS(unsigned int* address, 
                       unsigned int compare, 
                       unsigned int val); 
unsigned long long int atomicCAS(unsigned long long int* address,  
                                 unsigned long long int compare,  
                                 unsigned long long int val);

• reads the 32-bit or 64-bit word old located at the address address  
in global or shared memory 

• computes (old == compare ? val : old), stores the result back to 
memory at the same address 

• returns old
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Exercise - implement reduction via 3 approaches

Can be found in: 
 
/home/ppomorsk/CSE746_lec4/Reduction

17
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Exercise - implement largest prime search 

Can be found in: 
 
/home/ppomorsk/CSE746_lec4/Primes
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