Introduction to Distributed Memory
Programming with MPI

Pawel Pomorski, University of Waterloo, SHARCNET
ppomorsk@sharcnet.ca

June 16 , 2015

mailto:ppomorsk@sharcnet.ca

Essentials of MPI

What is parallel computing?

» Using many computers linked together by a communication
network to efficiently perform a computation that would not
be possible on a single computer

» Single computers have stagnated in performance, computing
power advances must be achieved today through parallelism.

> Parallelization cannot be handled for the user by the compiler.

» Various approaches to parallelization since 1990s

Parallelization techniques

> Message passing - most popular method which explicitly
passes data from one computer to another as they compute in
parallel.

» Assumes that each computer has its own memory not shared
with the others, so all data exchange has to occur through
explicit procedures.

» Contrast to shared memory processors, which include the
relatively recent consumer multicore processors, where
processes running on the cores can share memory and use
threads.

» Can still use message passing in shared memory architectures.

What is MPI?

> Message Passing Interface
> Language-independent communications protocol

» Portable, platform independent, de facto standard for parallel
computing on distributed memory systems

» Various implementations exist (MPICH, Open MPI, LAM,
vendor versions)

» Many popular software libraries have parallel MPI versions

» Principal drawback: it is very difficult to design and develop
programs using message passing

> “assembly language of parallel computing”
» Evolving: MPI-1 -> MPI-2 -> MPI-3

What is MPI?

» MPI is not a new programming language.

» It is a collection of functions and macros, or a library that can
be used in C programs (also C++, Fortran, Python etc.)

» Most MPI programs are based on SPMD model - Single
Program Multiple Data. This means that the same executable
in a number of processes, but the input data makes each copy
compute different things.

» All MPI identifiers begin with MPI_

» Each MPI function returns an integer which is an error code,
but the default behavior of MPI implementations is to abort
execution of the whole program if an error is encountered.
This default behavior can be changed.

Preliminaries

» A process is an instance of a program, can be created or
destroyed

> MPI uses a statically allocated group of processes - their
number is set at the beginning of program execution, no
additional processes created (unlike threads)

» Each process is assigned a unique number or rank, which is
from 0 to p-1, where p is the number of processes

» Number of processes is not necessarily number of processors;
a processor may execute more than one process

» Generally, to achieve the close-to-ideal parallel speedup each
process must have exclusive use of one processor core.

» Running MPI programs with one processor core is fine for

testing and debugging, but of course will not give parallel
speedup.

Blocking communication

» Assume that process 0 sends data to process 1

» In a blocking communication, the sending routine returns only
after the buffer it uses is ready to be reused

» Similarly, in process 1, the receiving routine returns after the
data is completely stored in its buffer

» Blocking send and receive: MPI_Send and MPI_Recv

» MPI_Send: sends data; does not return until the data have
been safely stored away so that the sender is free to access
and overwrite the send buffer

» The message might be copied directly into the matching
receive buffer, or it might be copied into a temporary system
buffer.

» MPI Recv: receives data; it returns only after the receive
buffer contains the newly received message

Message structure

Each message consists of two parts:

1. Data transmitted

2. Envelope, which contains:

» rank of the receiver
» rank of the sender
> a tag

» a communicator

Receive does not need to know the exact size of data arriving but
it must have enough space in its buffer to store it.

MPI program structure

v

Include mpi.h
Initialize MPI environment (MPI_lInit)

v

v

Do computations

v

Terminate MPI environment (MPI_Finalize)

MPI program structure
#include "mpi.h"
int main(int argc, char* argvl[])
{
V4 B 4

/* This must be the first MPI call */
MPI_Init(&argc, &argv);

/* Do computation */

MPI_Finalize();
/* No MPI calls after this line */

/* ... */

return O;

MPI program structure - quick Fortran example
Note the additional ierr argument in Fortran

program main
include "mpif.h"
integer ierr

c This must be the first MPI call
call MPI_INIT(ierr)

¢ Do computation
call MPI_FINALIZE(ierr)

c No MPI calls after this line

c ...

stop
end

MPI_Send

int MPI_Send(void *buf, int count, MPI_Datatype datatype,
int dest , int tag , MPI_Comm comm)

» buf - beginning of the buffer containing the data to be sent

» count - number of elements to be sent (not bytes)

» datatype - type of data, e.g. MPI_INT, MPI_DOUBLE,
MPI_CHAR

> dest - rank of the process, which is the destination for the
message

> tag - number, which can be used to distinguish among
messages

» comm - communicator: a collection of processes that can
send messages to each other, e.g. MPI_COMM_WORLD
MPI_COMM_WORLD: all the processes running when
execution begins

Returns error code

Predefined MPI datatypes

MPI datatype C datatype

MPI_CHAR signed char

MPI_INT signed int
MPI_FLOAT float

MPI_DOUBLE double

etc. etc.

MPI_BYTE no direct C equivalent
MPI_PACKED no direct C equivalent

In addition, user-defined datatypes are possible.

MPI_Recv

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

» buf - beginning of the buffer where data is received

» count - number of elements to be received (not bytes)

» datatype - type of data, e.g. MPI_INT, MPI_DOUBLE,
MPI_CHAR

» source - rank of the process from which to receive message

> tag - number, which can be used to distinguish among
messages

» comm - communicator

» status - information about the data received, e.g. rank of
source, tag, error code. Replace with
MPI_STATUS_IGNORE if never used.

> Returns error code

» Wildcards are possible for source and tag (eg.
MPI_ANY_SOURCE)

MPIl_Comm__rank

int MPI_Comm_rank (MPI_Comm comm, int *rank)

» comm - communicator

> rank - of the calling process in group comm

MPIl_Comm__size

int MPI_Comm_size(MPI_Comm comm, int *size)

» comm - communicator

> size - number of processes in group comm

First program
Adapted from P. Pacheco, Parallel Programming with MPI

/* greetings.c
* Send a message from all processes with rank != 0
* to process 0.
* Process 0 prints the messages received. */
#include <stdio.h>
#include <string.h>
#include "mpi.h"
int main(int argc, char* argv([])

{
int my_rank; /* rank of process
int pP; /% number of processes
int source; /* rank of sender
int dest; /* rank of receiver
int tag = 0; /* tag for messages
char message[100]; /* storage for message

MPI_Status status; /* status for receive

First program continued

/* Start up MPI */
MPI_Init(&argc, &argv);
/* Find out process rank */
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
/* Find out number of processes */
MPI_Comm_size (MPI_COMM_WORLD, &p);

if (my_rank != 0)
{
/* Create message */
sprintf (message, "Greetings from process J%d!",
my_rank) ;
dest = 0;
/* Use strlen+l so that '\0' gets transmitted */
MPI_Send(message, strlen(message)+1, MPI_CHAR,
dest, tag, MPI_COMM_WORLD);

First program continued

else
{ /* my_rank == 0 */
for (source = 1; source < p; source++)

{
MPI_Recv(message, 100, MPI_CHAR, source, tag,
MPI_COMM_WORLD, &status);
printf ("%s\n", message);
}

/* Shut down MPI */
MPI_Finalize();

return O;

}

Compilation and execution

Ubuntu Linux example:

1. Install necessary packages: mpich-bin,libmpichl.0-dev

2. Make sure ssh client and server installed

3. ssh localhost - needs to work without password. Might need
ssh key set up.

4. compile code with:

mpicc hello_world.c -o test.x
5. Execute:

mpirun -np 8 test.x

-np option specifies number of processes, which will all run on
localhost

Compilation and execution
SHARCNET example:

All the preliminaries taken care of. After getting an account,
choose a suitable cluster, log in.

Compile code with:
mpicc greetings.c -o greetings.x

mpicc is a script wrapper for C compiler that automatically links
the necessary MPI libraries, add the -v flag to see details

It is not possible to use mpirun directly. Instead, your executable
must be submitted as a job to the queueing system via:

sqsub —-q mpi -n 8 -r 20m -o out.dat greetings.x

-r 20m - estimates runtime of 20 minutes

-n 8 - specifies 8 MPI processes will be used

MPI in Python

» mpidpy (MPI for Python) provides bindings for MPI in Python

> object oriented, more user friendly, will automatically
determine many of the needed arguments to MPI calls

> http://mpidpy.scipy.org/

> http://mpidpy.scipy.org/docs/mpidpy.pdf

» Execute with: mpirun -np 4 python program.py

http://mpi4py.scipy.org/
http://mpi4py.scipy.org/docs/mpi4py.pdf

First program in Python using mpi4py

from mpid4py import MPI
comm = MPI.COMM_WORLD
my_rank = comm.Get_rank()
p = comm.Get_size()

if my_rank != O:
message = "Greetings from process "+str(my_rank)
comm.send (message, dest=0)
else :
for procid in range(i,p):
message = comm.recv(source=procid)
print "process O receives message from process",\
procid,":" ,message

Example: Numerical integration
Trapezoid rule for integrating fab = f{x)dx

with h=(b—a)/nis

fx) = §(fx0) + fxa)) + h 7 A(x)

where x; = a+ ih,i=0,1,....n

Given p processes, each process can work on n/p intervals

Note: for simplicity will assume n/p is an integer

process interval

0 [a,a+ 2h]
n n
1 [a+ Eh,a+2;h]

1 [a+(p—1)3hH

Example: Numerical integration with trapezoid rule

A

Parallel trapezoid

Assume f(x) = x°
Of course could have chosen any desired (integrable) function here.

Write function f(x) in
/* func.c */

float f(float x)
{

return x*Xx;

3

Serial trapezoid rule
/* traprule.c */

extern float f(float x); /* function we're integrating */

float Trap(float a, float b, int n, float h) {
float integral; /* Store result in integral */
float x;
int 1i;

integral = (f(a) + £(b))/2.0;
X = a;
for (i =1; i <=n-1; i++)
{
X = x + h;
integral = integral + f(x);
}

return integral*h;

Parallel trapezoid rule

/* trap.c -- Parallel Trapezoidal Rule

*

* Input: None.

* Output: Estimate of the integral from a to b of f(z)
* using the trapezoidal rule and n trapezoids.

*

* Algorithm:

* 1. Each process calculates "its" interval of

* integration.

* 2. Each process estimates the integral of f(z)

* over its interval using the trapezoidal rule.

* 3a. Each process != 0 sends tts integral to O.

* 3b. Process 0 sums the calculations received from
* the individual processes and prints the result.
*

* The number of processes (p) should evenly divide
*

*
N

the number of trapezoids (n = 1024)

[} = =

DA

Main program

int main(int argc, char** argv) {

int
int
float
float
int
float
float
float
int
float
float
int
int
int

MPI_Init(&argc, &argv);

my_rank;
p;

a = 0.0;
b=1.0;
1024;

n
h;
local_a;
local_b;
local_n;
integral;
total=-1;
source;
dest = 0;
tag = 0;

/* My process rank

/* The number of processes
/* Left endpoint

/* Right endpoint

/* Number of trapezoids

/* Trapezotid base length

/* Left endpoint my process
/* Right endpoint my process
/* Number of trapezoids

/* Integral over my interval
/* Total integral

/* Process sending integral
/% All messages go to 0
MPI_Status status;

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
MPI_ Comm_size(MPI_COMM_WORLD, &p);

h = (b-a)/n; /* h is the same for all processes */
local_n = n/p; /* So is the number of trapezoids */
/* Length of each process' interval of
integration = local_n*h. */
local_a = a + my_rank*local_n*h;
local_b = local_a + local_n*h;
integral = Trap(local_a, local_b, local_n, h);
/% Add up the integrals calculated by each process */
if (my_rank == 0)
{
total = integral;
for (source = 1; source < p; source++)
{
MPI_Recv(&integral, 1, MPI_FLOAT, source, tag,
MPI_COMM_WORLD, &status);
printf ("PE Jd <- %d, %f\n", my_rank,source,
integral);
total = total + integral;
}

else
{
printf ("PE %d -> %d, %f\n", my_rank, dest, integral);
MPI_Send(&integral, 1, MPI_FLOAT, dest,
tag, MPI_COMM_WORLD);
}
/* Print the result */
if (my_rank == 0)
{
printf("With n = %d trapezoids, our estimate\n",
n);
printf("of the integral from %f to %f = %f\n",
a, b, total);
}

MPI_Finalize();
return O;

3

Summary

To write many MPI parallel programs you only need:

» MPI_Init

» MPI_Comm_rank
» MPI_Comm_size
» MPI_Send

» MPI_Recv

» MPI_Finalize

Understanding Communications

Concepts

Buffering
Safe programs

Non-blocking communications

Buffering

Suppose we have

if (rank==0)
MPI_Send(sendbuf,...,1,...)
if (rank==1)

MPI_Recv(recvbuf,...,0,...)

These are blocking communications, which means they will not
return until the arguments to the functions can be safely modified
by subsequent statements in the program.

Assume that process 1 is not ready to receive

There are 3 possibilities for process 0:

1. stops and waits until process 1 is ready to receive
2. copies the message at sendbuf into a system buffer (can be on

process 0, process 1 or somewhere else) and returns from
MPI_Send

3. fails

Buffering

As long as buffer space is available, (b) is a reasonable alternative

An MPI implementation is permitted to copy the message to be
sent into internal storage, but it is not required to do so

What if not enough space is available?

> In applications communicating large amounts of data, there
may not be enough memory (left) in buffers

» Until receive starts, no place to store the send message

» Practically, (a) results in a serial execution

A programmer should not assume that the system provides
adequate buffering

Example

Consider a program executing

Process 0 Process 1

MPI_Send to process 1 MPI1_Send to process 0

MPI_Recv from process 1 MPI_Recv from process 0

Such a program may work in many cases, but it is certain to fail
for message of some size that is large enough

Possible solutions

Ordered send and receive - make sure each receive is matched with
send in execution order across processes

This matched pairing can be difficult in complex applications. An
alternative is to use MPI_Sendrecv. It performs both send and
receive such that if no buffering is available, no deadlock will occur

Buffered sends. MPI allows the programmer to provide a buffer
into which data can be placed until it is delivered (or at least left
in buffer) via MPI_Bsend

Nonblocking communication. Initiated, then program proceeds
while the communication is ongoing, until a check that
communication is completed later in the program. Important: in
this case you must make certain that you do not modify the data
until you are certain communication has completed.

MPI_Sendrecv

int MPI_Sendrecv(void *sendbuf, int sendcount,
MPI_Datatype sendtype, int dest, int sendtag,
void *recvbuf, int recvcount,
MPI_Datatype recvtype, int source, int recvtag,
MPI Comm comm, MPI_ Status *status)

Combines:

» MPI_Send - send data to process with rank=dest
» MPI_Recv - receive data from process with rank=source
Source and dest may be the same

MPI_Sendrecv may be matched by ordinary MPI_Send or
MPI_Recv

Performs Send and Recv, and organizes them in such a way that
even in systems with no buffering program won't deadlock

MPI_Sendrecv__replace

int MPI_Sendrecv_replace(void #*buf, int count,
MPI_Datatype datatype, int dest, int sendtag,
int source, int recvtag,
MPI_Comm comm, MPI_Status *status)

» Sends and receives using a single buffer
» Process sends contents of buf to dest, then replaces them
with data from source

» If source=dest, then function swaps data between process
which calls it and process source

Safe programs

v

A program is safe if it will produce correct results even if the
system provides no buffering.

v

Need safe programs for portability.

» Most programmers expect the system to provide some
buffering, hence many unsafe MPI programs are around.

v

Write safe programs using matching send with receive,
MPI_Sendrecv, allocating own buffers, nonblocking operations

Nonblocking communications

» nonblocking communications are useful for overlapping
communication with computation, and ensuring safe programs

» a nonblocking operation requests the MPI library to perform
an operation (when it can)

» nonblocking operations do not wait for any communication
events to complete

» nonblocking send and receive: return almost immediately

» can safely modify a send (receive) buffer only after send
(receive) is completed

» “wait"” routines will let program know when a nonblocking
operation is done

MPI__Isend

int MPI_Isend(void* buf, int count, MPI_Datatype datatype,
int dest, int tag , MPI_Comm comm,
MPI_Request *request)

» buf - starting address of buffer

» count - number of entries in buffer
» datatype - data type of buffer

> dest - rank of destination

> tag - message tag

» comm - communicator

> request - communication request (out)

MPI1_lrecv

int MPI_Irecv(void* buf, int count, MPI_Datatype datatype,
int source , int tag ,MPI_Comm comm,
MPI_Request *request)

» buf - starting address of buffer (out)
» count - number of entries in buffer
» datatype - data type of buffer

> source - rank of source

> tag - message tag

» comm - communicator

> request - communication request (out)

Wait routines

int MPI_Wait (MPI_Request *request , MPI_Status *status)

Waits for MPI_lsend or MPI_Irecv to complete

» request - request (in), which is out parameter in MPI_lsend
and MPI_lrecv
» status - status output, replace with MPI_STATUS_IGNORE

if not used

Wait routines

Other routines include:

» MPI_Waitall waits for all given communications to complete

» MPI_Waitany waits for any of given communications to
complete

» MPI_Test tests for completion of send or receive, i.e returns
true if completed, false otherwise

» MPI_Testany tests for completion of any previously initiated
communication in the input list

MPI_Waitall

int MPI_Waitall (int count,
MPI_Request array_of_requests([],
MPI_Status array_of_statuses[])

Waits for all given communications to complete

» count - list length

» array_of_requests - each request is an output parameter in
MPI_Isend and MPI_Irecv

» array_of_statuses - array of status objects, replace with
MPI_STATUSES_IGNORE if never used

Example: Communication between processes in ring
topology

Example - Communication between processes in ring
topology

» With blocking communications it is not possible to write a
simple code to accomplish this data exchange.

» For example, if we have MPI_Send first in all processes,
program will get stuck as there will be no matching
MPI_Recv to send data to

> Nonblocking communication avoids this problem

Ring topology example

/* monb.c */
#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"
int main(int argc, char *argv[]) {
int numtasks, rank, next, prev,
buf [2], tagl=1, tag2=2;

tagl=tag2=0;
MPI_Request reqs[4];
MPI_Status stats[4];

MPI_Init(&argc,&argv);
MPI_Comm_size (MPI_COMM_WORLD, &numtasks);

MPI_Comm_ rank(MPI_ COMM_WORLD, &rank);

Ring topology example

prev = rank-1;

next = rank+1;
if (rank == 0) prev = numtasks - 1;
if (rank == numtasks - 1) next = 0;

MPI_Irecv(&buf[0], 1, MPI_INT, prev, tagl,
MPI_COMM_WORLD, &reqs[0]);

MPI_Irecv(&buf[1], 1, MPI_INT, next, tag2,
MPI_COMM_WORLD, ®s[1]);

MPI_Isend(&rank, 1, MPI_INT, prev, tag2,
MPI_COMM_WORLD, &reqs[2]);

MPI_Isend(&rank, 1, MPI_INT, next, tagl,
MPI_COMM_WORLD, &reqsl[3]);

MPI_Waitall(4, reqs, stats);

printf ("Task %d communicated with tasks %d & %d\n",

rank,prev,next) ;
MPI Finalize();
return 0; }

MPI_Test

int MPI_Test (MPI_Request *request,int *flag,
MPI_Status *status)

» request - (input) communication handle, which is output
parameter in MPI_lsend and MPI_lrecv

» flag - true if operation completed (logical)

» status - status output, replace with MPI_STATUS_IGNORE
if not used

MPI_Test - can be used to test if communication completed, can
be called multiple times, in combintation with nonblocking
send/receive, to control execution flow between processes

Non-deterministic workflow

if (my_rank == 0){
(... do computation ...)
/* send signal to other processes */

for (proc = 1; proc < nproc; proc++){

MPI_Send(&buf, 1, MPI_INT, proc, tag, MPI_COMM_WORLD)
)
else{

/* initiate nonblocking receive */

MPI_Irecv(&buf,1, MPI_INT, O, tag, MPI_COMM_WORLD,&reqs);
for(i = 0; i <= Nlarge; i++){

/* test if Irecv completed */

MPI_Test(&reqs, &flag, &status);

if (flag){

break; /* terminate loop */
+
else{

(... do computation ...)

}r3

Summary for Nonblocking Communications

» nonblocking send can be posted whether a matching receive
has been posted or not

» send is completed when data has been copied out of send
buffer

» nonblocking send can be matched with blocking receive and
vice versa

» communications are initiated by sender

» a communication will generally have lower overhead if a
receive buffer is already posted when a sender initiates a
communication

Collective communications

Introduction

Collective communication involves all the processes in a
communicator

We will consider:

Broadcast

v

Reduce
Gather
Scatter

v

v

v

Reason for use: convenience and speed

Broadcast

Broadcast: a single process sends data to all processes in a
communicator

int MPI_Bcast(void *buffer , int count,
MPI_Datatype datatype, int root, MPI_Comm comm)

» buffer starting address of buffer (in/out)
» count number of entries in buffer

» datatype data type of buffer root

» rank - rank of broadcast root

» comm - communicator

MPI|_Bcast

» MPI_Bcast sends a copy of the message on process with rank
root to each process in comm

» must be called in each process
» data is sent in root and received by all other processes

» buffer is 'in" parameter in root and 'out’ parameter in the rest
of processes

» cannot receive broadcasted data with MPI_Recv

Broadcast - poor implementation

» Serial, 7 time steps needed

Broadcast - actual, parallel implementation

» Parallel, 3 time steps needed

Example: reading and broadcasting data

Code adapted from P. Pacheco, PP with MPI
/* getdata2.c */

/* Function Get_data
* Reads in the user input a, b, and n.
* Input parameters:
* 1. int my_rank: rank of current process.
* 2. int p: number of processes.
* Output parameters:
* 1. float* a_ptr: pointer to left endpoint a.
* 2. float* b_ptr: pointer to right endpoint b.
* 3. int* n_ptr: pointer to number of trapezoids.
* Algorithm:
* 1. Process 0 prompts user for input and
* reads in the values.
* 2.
*
</

Process 0 sends tnput values to other

m]

processes using three calls to MPI_Bcast.

=

DA

#include <stdio.h>
#include "mpi.h"

void Get_data(float* a_ptr, float* b_ptr, int* n_ptr,
int my_rank)
{
if (my_rank == 0)
{
printf ("Enter a, b, and n\n");
scanf ("%f %f %d", a_ptr, b_ptr, n_ptr);
}
MPI_Bcast(a_ptr, 1, MPI_FLOAT, 0, MPI_COMM_WORLD);
MPI_Bcast(b_ptr, 1, MPI_FLOAT, O, MPI_COMM_WORLD);
MPI_Bcast(n_ptr, 1, MPI_INT, 0, MPI_COMM_WORLD);

Reduce
Data from all processes are combined using a binary operation

int MPI_Reduce(void #*sendbuf, void *recvbuf, int count,
MPI Datatype datatype, MPI_Op op,
int root, MPI_Comm comm)

» sendbuf - address of send buffer

> recvbuf - address of receive buffer, significant only at root
» count - number of entries in send buffer

» datatype - data type of elements in send buffer

> op - reduce operation; predefined, e.g. MPI_MIN, MPI_SUM,
or user defined

» root - rank of root process
» comm - communicator

» Must be called in all processes in a communicator, BUT result
only available in root process

Example - trapezoid with reduce
Code adapted from P. Pacheco, PP with MPI

/* redtrap.c */

#include <stdio.h>

#include "mpi.h"

extern void Get_data2(float* a_ptr, float* b_ptr,

int* n_ptr, int my_rank);

extern float Trap(float local_a, float local_b,

int local n, float h);

int main(int argc, char*x argv)

{
int
float
int
float
float
float

my_rank, p;
a, b, h;
n;

local_a, local_b, local_n;
integral; /* Integral over my interval */
total; /* Total integral */

Get_data2(&a, &b, &n, my_rank);

h = (b-a)/n;
local_n = n/p;

local_a
local_b
integral = Trap(local_a, local_b, local_n, h);

a + my_rank*local_n*h;

local_a + local_nx*h;

/* Add up the integrals calculated by each process */
MPI_Reduce(&integral, &total, 1, MPI_FLOAT,
MPI_SUM, O, MPI_COMM_WORLD);

if (my_rank == 0)
{
printf("With n = %d trapezoids, our estimate\n", n);
printf("of the integral from %f to %f = %f\n",
a, b, total);

Allreduce

int MPI_Allreduce(void *sendbuf, void *recvbuf,
int count, MPI_Datatype datatype,
MPI_Op op, MPI_Comm comm)

Similar to MPI Reduce except the result is returned to the receive
buffer of each process in comm

Gather

Process

Process

Process

Process

Xe

X1

X2

X3

Gather

int MPI_Gather(void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root,
MPI_Comm comm)

> Gathers together data from a group of processes sendbuf -
starting address of send buffer

» sendcount - number of elements in send buffer
» sendtype - data type of send buffer elements
» recvbuf - address of receive buffer (significant only at root)

> recvcount - number of elements for any single receive
(significant only at root)

» recvtype - data type of recv buffer elements (significant only
at root)

> root - root rank of receiving process

» comm - communicator

Gather

» MPI_Gather collects data, stored at sendbuf, from each
process in comm and stores the data on root at recvbuf

» Data is received from processes in order, i.e. from process 0,
then from process 1 and so on

» Usually sendcount, sendtype are the same as recvcount,
recvtype

» root and comm must be the same on all processes
» The receive parameters are significant only on root

» Amount of data sent/received must be the same

Allgather

int MPI_Allgather(void #*sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf,
int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

> Use if gathered data needs to be available to all processes.

» The block of data sent from the jth process is received by
every process and placed in the jth block of the buffer recvbuf.

Scatter

Process

Process

Process

Process

Xe

X1

X2

Scatter

int

vV v vV VY

MPI_Scatter(void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

Sends data from one process to all other processes in a
communicator

sendbuf starting address of send buffer (significant only at
root)

sendcount - number of elements sent to each process
(significant only at root)

sendtype - data type of send buffer elements (significant only
at root)

recvbuf - address of receive buffer

recvcount - number of elements for any single receive
recvtype - data type of recv buffer elements

root - rank of sending process

comm - communicator

Scatter

MPI_Scatter splits data at sendbuf on root into p segments, each
of sendcount elements, and sends these segments,in order, to
processes 0, 1, ..., p-1

Inverse operation to MPI_Gather

The outcome is as if the root executed n send operations,

MPI_Send(sendbuf + i * sendcount * extent(sendtype),
sendcount, sendtype, i, ...)

and each process executed a receive,
MPI_Recv(recvbuf, recvcount, recvtype, i, ...).

Amount of data sent must be equal to amount of data received.

Parallel Matrix Multiplication

Ax=y - data distributed on 4 processes

Process @

Process 1

Process 2

Process 3

Figure 1: Matrix multiply

Example - parallel matrix times vector

N\
¥ % % % ¥ %X %X %X ¥ ¥ ¥ *x *x *x *x

*
N

2.

Code adapted from P. Pacheco, PP with MPI
parallel_mat_vect.c -- computes a parallel
matriz—vector product.
Matriz i1s distributed by block rows.
Vectors are distributed by blocks.
Input:
m, n: order of matriz
A, z: the matriz and the wvector to be multiplied
Output:
y:
Notes:
1.

the product wvector

Local storage for A, z, and y

1s statically allocated.

Number of processes (p) should evenly
divide both m and n.

DA

#include <stdio.h>

#include "mpi.h"

#include "matvec.h"

int main(int argc, char* argv[]) {

int my_rank, p;
LOCAL_MATRIX_ T 1local_A;

float global_x[MAX_ORDER];
float local_x[MAX_ORDER];
float local_y[MAX_ORDER];
int m, n;

int local_m, local_n;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &p);

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

if (my_rank == 0) {
printf("Enter the order of the matrix (m x n)\n");
scanf ("%d %d", &m, &n); }

MPI Bcast(&m, 1, MPI_INT, O, MPI_COMM_WORLD) ;

MPI Bcast(&n, 1, MPI_INT, O, MPI_COMM_WORLD);

local_m = m/p;
local_n = n/p;
Read_matrix("Enter the matrix",
local_A, local_m, n, my_rank, p);
Print_matrix("We read",
local_A, local_m, n, my_rank, p);
Read_vector("Enter the vector",
local_x, local_n, my_rank, p);
Print_vector("We read",
local_x, local_n, my_rank, p);
Parallel _matrix_vector_prod(local_A, m, n, local_x,
global_x, local_y, local_m,
local n);
Print_vector("The product is", local_y, local_m,

my_rank, p);
MPI_Finalize();
return O;

/* matvec.h */
#define MAX_ORDER 100
typedef float LOCAL_MATRIX_T[MAX_ORDER] [MAX_ORDER] ;
void Read_matrix(char* prompt, LOCAL_MATRIX_T local_A,
int local_m, int n, int my_rank, int p);
void Read_vector(charx prompt, float local_x[],
int local_n, int my_rank, int p);
void Parallel _matrix_vector_prod(LOCAL_MATRIX_T local_A,
int m,
int n, float local_xI[],
float global_xI[],
float local_yl[],
int local m, int local_n)
void Print_matrix(char* title, LOCAL_MATRIX_T local_A,
int local_m, int n, int my_rank, int p);
void Print_vector(char* title, float local_yl[],
int local_m, int my_rank, int p);

/* parmatvec.c */

#include "mpi.h"

#include "matvec.h"

void Parallel_matrix_vector_prod

(LOCAL_MATRIX_T 1local_A, int m, int n,

float local_x[], float global_x[], float local_yl[],

int local m, int local n) {

/* local_m = m/p, local_n = n/p */

int i, j;

MPI_Allgather(local_x, local_n, MPI_FLOAT,
global_x, local_n, MPI_FLOAT,
MPI_COMM_WORLD) ;

for (i = 0; i < local_m; i++) {

local_yl[i] = 0.0;
for (j = 0; j < n; j++)
local_y[i] = local_y[i] +
local_A[il [jl*global_x[j];

/* readvec.c */
#include <stdio.h>
#include "mpi.h"
#include "matvec.h"
void Read_vector(char *prompt,float local_x[],int local_n,
int my_rank, int p) {
int i;
float temp[MAX_ORDER];
if (my_rank == 0)
{
printf ("%s\n", prompt);
for (i = 0; i < p*local_n; i++)
scanf ("/f", &temp[i]);
}
MPI_Scatter(temp, local_n, MPI_FLOAT,
local_x, local_n, MPI_FLOAT,
0, MPI_COMM_WORLD) ;

/* readmat.c */
#include <stdio.h>
#include "mpi.h"
#include "matvec.h"
void Read_matrix(char *prompt, LOCAL_MATRIX_T 1local_A,
int local_m, int n, int my_rank,int p) {
int i, j;
LOCAL_MATRIX_T temp;
for (i = 0; i < p*local_m; i++)
for (j = n; j < MAX_ORDER; j++)
temp[i] [j] = 0.0; /* Initialize temp with zeroes */
if (my_rank == 0) {
printf ("%s\n", prompt);
for (i = 0; i < pxlocal_m; i++)
for (j = 0; j < n; j++)
scanf ("%f",&temp[i] [j1); }
MPI_Scatter(temp, local_m*MAX_ORDER, MPI_FLOAT,
local_A,local_m*MAX_ ORDER,MPI_FLOAT,0,MPI_COMM_WORLD);}

/* printvec.c */
#include <stdio.h>
#include "mpi.h"
#include "matvec.h"
void Print_vector(char *title, float local_yl[],
int local_m, int my_rank, int p) {
int i;
float temp[MAX_ORDER];
MPI_Gather(local_y, local_m, MPI_FLOAT,
temp, local_m, MPI_FLOAT,
0, MPI_COMM_WORLD);
if (my_rank == 0)
{
printf ("%s\n", title);
for (i = 0; i < p*local_m; i++)
printf("%4.1f ", temp[il);
printf("\n");
}

/* printmat.c */
#include <stdio.h>
#include "mpi.h"
#include "matvec.h"
void Print_matrix(char *title, LOCAL_MATRIX_T 1local_A,
int local _m, int n, int my_rank, int p){
int i, j;
float temp[MAX_ORDER] [MAX_ORDER] ;
MPI_Gather(local_A, local_m*MAX ORDER, MPI_FLOAT,
temp, local_m*MAX_ORDER, MPI_FLOAT,
0, MPI_COMM_WORLD);
if (my_rank == 0) {
printf ("%s\n", title);
for (i = 0; i < p*local_m; i++) {
for (j = 0; j < n; j++)
printf("%4.1f ", temp[il [j1);
printf("\n");
}

Summary for Collective Communications

v

Amount of data sent must match amount of data received

v

Blocking versions only

v

No tags: calls are matched according to order of execution

v

A collective function can return as soon as its participation is
complete

Further MPI features to explore

» Communicators

v

Topologies

v

User defined datatypes

v

Parallel input/output operations

v

Parallel algorithms

v

Parallel libraries (eg. Scalapack)

	Essentials of MPI
	Understanding Communications
	Collective communications

