Performance of parallel programs



Sources of overhead
Total parallel overhead
Speedup

Efficiency

Scalability
Communication cost

Timing

Outline



Sources of overhead

Overhead - factors which make the parallel code run slower than
expected, when compared to the serial code

- Communication

- Idling, load imbalance, synchronization, presence of serial
components

- Excess computation

The fastest known serial algorithm may be difficult or impossible to

parallelize. Hence may have to use a poorer, but easier to
parallelize algorithm

The difference in computation performed by the parallel program and

the best serial program is the excess computation overhead incurred
by the parallel program



Total parallel overhead

Denote serial running time by Ts and parallel running time on p
processors by T,

(We assume solving problems of the same size)

Total overhead is defined as
To - pr - Ts

Ts is the time for the fastest serial algorithm solving the problem on
1 processor

pT, is the total time spent over all processors solving the problem



Speedup

Speedup is defined as

g T
7}
Usually © < S < p
If S = p, we have linear speedup

Theoretically, S can never exceed p

In practice, it may happen that S > p : superlinear speedup



Example of superlinear speedup: cache effect

Say you are running a program that requires memory M = 100 MB

The processors available to you all have 8 MB cache. Memory access to
cache memory is MUCH faster that access to main RAM memory.

Assume program can be parallelized to run on p processes, and work
divided in such a way that only M/p memory 1is used by each process.

When p is increased sufficiently for M/p to fit completely within the

8 MB cache (i.e. p>12), there will be no cache misses (i.e. slow access
to main RAM memory) and a superlinear increase in performance may be
observed.

This is highly dependent on the particular program (and its parallel
overhead) and the computing hardware one is using.



Efficiency

Efficiency is a measure of processor utilization in a parallel program

That is a measure of the fraction of time for which a processor is
employed

o
P

F —

If E =1 , linear speedup

If E < 1/p, slowdown (serial program is faster)



Scalability

Efficiency as p grows, problem size fixed

Efficiency can be written as

S T 1
E:—: . ‘

p pl, 1+ %?

S

To 1s an increasing function of p

- every program must contain some serial component, or
one that cannot be efficiently parallelized
Example: MPI Init which initializes MPI

- To give the most common example, if the time for the serial component
on process 0 is ts, p-1 processors will be idle for (p-1)ts

- hence T, grows at least linearly

- because of communication, idling, and excess computation, it may grow
superlinearly

For a given problem size efficiency goes down as p increases



Efficiency as problem size grows, p fixed

To depends on problem size and p
In many cases, T, grows sublinearly with respect to program size
Efficiency increases as p is fixed and problem size is increased

Scalable: the efficiency can be kept constant as the number of
processing elements is increased, provided that the problem size 1is
increased

It follows that, when testing parallel programs for efficiency, it is
important to select the correct problem size.

For example, it may be acceptable for a parallel program to show poor
efficiency for small problem size (for which one would usually use
serial code anyway), as long as it displays good efficiency for large
problem sizes, for which running in parallel may be the only way to
obtain a solution to the problem



Is running a low efficiency parallel code ever
acceptable?

Broadly speaking, no. If for some p processes the code has poor
efficiency, it is better to run multiple runs with a lower number of
processes and benefit from the higher efficiency that usually results.
This assumes that to some degree the problem can be broken into
multiple independent runs, which is the case in the vast majority of
problems.

In fact, it is quite common to find that running many serial process 1s
best. Such an approach is called “serial farming”.

If a problem cannot be broken down into parts in any way and so it must
be run on a large number of processes (because it will not fit into
memory otherwise, for example), then lower efficiency may be justified.

On SHARCNET running low efficiency code is discouraged, to ensure
fairness in distributing resources to users.

For some mission critical software, speedup may trump efficiency. For
example, a company that can increase profits if it is able to compute
results faster may be willing to buy a cluster with many machines to
achieve that speedup, even in cases where efficiency is quite low.



Amdahl’s Law

Model for relationship between expected speedup of a partially
parallelized algorithm as compared to serial algorithm

Highly relevant as most parallel programs are obtained by taking the
serial code and parallelizing its most time consuming parts

Assume that in a serial code, fraction P of the code (as measured by
computational time needed) has been parallelized. Let’s assume that
parallelization has been perfect, with no overhead and hence linear

speedup (i.e. best case scenario).

Amdahl’s law states that the maximum speedup achievable in that case
when running with p processors is

(S
1 T,

S:

(1-P)+ 0 PT



Speedup

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

Amdahl’'s Law

——

///’

Parallel Portion
— 50%
— 75%

90%
— 95%

-
o

32
128
256
512

1024

Number of Processors

2048
4096
8192
16384

32768

65536

As P goes to infinity

1

l1-P

One can parallelize more and more of the code to
progressively reduce P, but this costs increasing amounts of

effort

Law of diminishing returns will eventually set in

= constant



Timing
One can use a special MPI function to time parallel code:

double MPI Wtime(void);

It returns time elapsed (in seconds) since some point in the past which
will not change during the execution of the task. Note that this MPI
function does not return an integer error code.

Example use:

t1=MPI Wtime();

... Code we wish to time ...

t2=MPI_Wtime();

time _diff=t2-t1l; /* how long it too to execute the code */

May not be precise enough for some tasks (eg. for measuring a single
communication function call), but may be OK if one averages over many
short tasks

Other timing functions in C may work better (eg. gettimeofday)

Output of SHARCNET job scripts provides some useful information about
the total runtime of your program



