Advanced Point to Point Communications

Communication Modes

Standard Mode
It is up to MPI to decide whether outgoing messages will be buffered
With buffering, send may complete before a receive is posted

If no buffering is available, the send will not complete until a
matching receive has been posted and the data has been moved to the
receiver

A blocking send completes when the call returns; a nonblocking send
completes when a matching Wait or Test call returns successfully

Thus, a send can be started whether or not a matching receive has been
posted

Buffered mode

A buffered-mode send can be started whether or not a matching receive
has been posted

It may complete before a matching receive is posted
Buffer space is provided by the application

An error occurs if a buffered-mode send is called and there 1is
insufficient buffer space

Synchronous mode

A synchronous-mode send can be started whether or not a matching
receive has been posted

It completes only if a matching receive is posted, and the receive

operation has started to receive the message sent by the synchronous
send

A communication does not complete at either end before both processes
rendezvous at the communication

Ready mode

A ready-mode send may be started only if a matching receive has already
been posted

Otherwise, the outcome is undefined (i.e. erroneous)

On some systems ready-mode allows the removal of the hand-shake
operation and results in improved performance

Prefixes

Three additional send functions are provided for the three additional
communication modes

B - buffered

S - synchronous

R - ready

There 1is only one receive mode and it matches any of the send modes
Non-blocking variants of above:

Ib - nonblocking buffered

Is - nonblocking synchronous

Ir - nonblocking standard

In addition to:

I - nonblocking standard

Note: There exists nonblocking MPI Irecv

Persistent communications

Often a communication with the same argument list is repeatedly
executed within the inner loop of a parallel computation

With persistent communications, one may be able to optimize for
performance by

- binding the list of communication arguments to a persistent
communication request once and

- repeatedly using the request to initiate and complete message
communication

Persistent communications can minimize the software overhead associated
with redundant message setup

Persistent communication routines are non-blocking

Using persistent communications 1is a four-step process

Persistent communications: steps

Step 1: Create persistent requests

Available routines are:

MPI Send init creates a persistent standard send request

MPI Bsend init creates a persistent buffered send request
MPI Ssend init creates a persistent synchronous send request
MPI Rsend init creates a persistent ready send request

MPI Recv _init creates a persistent receive request

Step 2: Start communication transmission
Data transmission 1s begun by calling either of the MPI_Start routines:
- MPI Start activates a persistent request operation

- MPI Startall activates a collection of persistent request operations
Step 3: Wait for communication completion

Because persistent operations are non-blocking, the appropriate
MPI Wait or MPI Test routine must be used to insure their completion

Step 4: Deallocate persistent request objects
When there is no longer a need for persistent communications, the

programmer should explicitly free the persistent request objects using
the MPI Request free() routine

Example

From https://computing.llnl.gov/tutorials/mpi_performance/samples/
persist.c

/* This code conducts timing tests on messages sent between two
processes using persistent communications. */

"mpi.h"

<stdio.h>

/* Modify these to change timing scenario */

TRIALS 10

STEPS 20

MAX MSGSIZE 1048576 /* 2"STEPS */
REPS 1000

MAXPOINTS 10000

int numtasks, rank, tag=999, n, i, j, k, this, msgsizes[MAXPOINTS];
double mbytes, tbytes, results[MAXPOINTS], ttime, t1, t2;

char sbuff[MAX_MSGSIZE], rbuff[MAX MSGSIZE];

MPI Status stats[2];

MPI_Request reqs[2];

https://computing.llnl.gov/tutorials/mpi_performance/samples/persist.c
https://computing.llnl.gov/tutorials/mpi_performance/samples/persist.c
https://computing.llnl.gov/tutorials/mpi_performance/samples/persist.c
https://computing.llnl.gov/tutorials/mpi_performance/samples/persist.c

int main(argc,argv)
int argc;
char *argv[]; A

MPI Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* task @ */
if (rank == 0) {

/* Initializations */

n=1;

for (i=0; i<=STEPS; i++) {
msgsizes[i] = n;
results[i] = 0.0;
n=n*2;
}

for (i=0; i<MAX MSGSIZE; i++)
sbuff[i] = 'x';

/* Greetings */

printf("\n****** pepsistent Communications *****\n");
printf("Trials= %8d\n", TRIALS);
printf("Reps/trial= %8d\n",REPS);

printf("Message Size Bandwidth (bytes/sec)\n");

/* Begin timings */
for (k=0; k<TRIALS; k++) {
n=1;
for (j=0; Jj<=STEPS; j++) {
/* Setup persistent requests for both the send and receive */
MPI Recv_init (&rbuff, n, MPI_CHAR, 1, tag, MPI_COMM WORLD, &reqs[@]);
MPI Send init (&sbuff, n, MPI CHAR, 1, tag, MPI_COMM WORLD, &reqs[1l]);

tl = MPI Wtime();
for (i=1; i<=REPS; i++){
MPI Startall (2, reqs);
MPI Waitall (2, regs, stats);

}
t2 = MPI _Wtime();

/* Compute bandwidth and save best result over all TRIALS */
ttime = t2 - t1;

tbytes = sizeof(char) * n * 2.0 * (float)REPS;

mbytes = tbytes/ttime;

if (results[j] < mbytes) results[j] = mbytes;

/* Free persistent requests */
MPI Request free (&reqs[9]);
MPI Request free (&reqgs[1]);
n=n*2;
} /* end j loop */
} /* end k loop */ /* end of task @ */

if (rank == 1) {

/* Begin timing tests */

for (k=0; k<TRIALS; k++) {
n=1;
for (j=0; j<=STEPS; j++) {

/* Setup persistent requests for both the send and receive */
MPI Recv_init (&rbuff, n, MPI CHAR, ©, tag, MPI_COMM WORLD, &reqs[9]);
MPI Send init (&sbuff, n, MPI CHAR, 0, tag, MPI_COMM WORLD, &reqs[1]);

for (i=1; i<=REPS; i++){
MPI Startall (2, regs);
MPI Waitall (2, reqgs, stats);

¥

/* Free persistent requests */
MPI Request free (&reqs[9]);
MPI Request free (&reqs[1l]);
n=n*2;

} /* end j loop */
} /* end k loop */
} /* end task 1 */

MPI Finalize();
}

Buffered mode

An application must specify a buffer to be used for buffering messages
in buffered mode

Buffering is done by sender

MPI Buffer attach - attaches buffer (does not allocate buffer memory,
that must be done earlier)

MPI Buffer_detach - detaches buffer. If there are pending buffer
sends, it will block until they have completed. Does not deallocate
buffer memory, that must be done after.

MPI Bsend - buffer send, blocking

MPI Ibsend - buffer send, non-blocking

Example

From: https://computing.llnl.gov/tutorials/mpi_ performance/samples/buffsend.c
/*Demonstrates MPI buffered send operations */

"mpi.h"
<stdio.h>
NELEM 100000

int main(argc,argv)

int argc;

char *argv][];

{

int numtasks, rank, rc, i, dest=1, tag=111, source=0, size;
double data[NELEM], result;

void *buffer;

MPI Status status;

MPI Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD,&rank) ;

if (numtasks != 2) {
printf("Please run this test with 2 tasks. Terminating\n");
MPI Finalize();

h
printf ("MPI task %d started...\n", rank);

/******************* Send taSk ******************/

if (rank == 0) {

/* Initialize data */
for(i=0; i<NELEM; i++)
data[i] = (double)random();

/* Determine size of buffer needed including any required MPI
overhead */

MPI_Pack size (NELEM, MPI_DOUBLE, MPI_COMM_WORLD, &size);

size = size + MPI BSEND OVERHEAD;

printf("Using buffer size= %d\n",size);

/* Attach buffer, do buffered send, and then detach buffer */
buffer = (void*)malloc(size);
rc = MPI Buffer_attach(buffer, size);
if (rc != MPI_SUCCESS) {
printf("Buffer attach failed. Return code= %d Terminating\n", rc);
MPI Finalize();
}
rc = MPI Bsend(data, NELEM, MPI DOUBLE, dest, tag, MPI_COMM WORLD);
printf("Sent message. Return code= %d\n",rc);
MPI Buffer detach(&buffer, &size);
free (buffer);

¥

/*************** Receive task *********************/
if (rank == 1) {
MPI Recv(data, NELEM, MPI_ DOUBLE, source, tag, MPI_COMM_WORLD,

&status);
printf("Received message. Return code= %d\n",rc);

¥

MPI Finalize();
}

Conclusion

For a basic program standard send and receive may do fine.

For a more advanced program, where performance is important, or where
reliability is crucial, a programmer should consider using the more
advanced communication functions as needed.

